Modular units inside cyclotomic units

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-functions and Cyclotomic Units

Here RK is the regulator of K, wK is the number of roots of unity in K and hK is the class number of K. This formula is a striking connection between arithmetic and analysis, and there have been many attempts to generalize it to other L-functions: one expects that the value of a “motivic” L-function at an integer point should involve a transcendental factor, a boring rational factor, and an int...

متن کامل

On Modular Units

Introduction. In [6], Kubert and Lang describe the group of integral modular units on Γ(n) (“units over Z” in their terminology), and in particular determine its rank. Their method is based on finding explicit generators for the group of all modular units, and then by calculating their q-expansions to determine which are integral. In §5 of , Beilinson suggests another approach, based on represe...

متن کامل

Roots of Modular Units

Let p be a prime. We prove that if a modular unit has a pth root that is again a modular unit, then the level of that root is at most p times the level of the original unit.

متن کامل

Cyclotomic Units and the Iwasawa Main Conjecture

In these notes, we follow the proof in [1] of the main conjecture of Iwasawa theory making heavy use of the Euler system of cyclotomic units. On the one hand, using the local theory of Coleman series and ideas of Iwasawa one obtains a connection with the p-adic zeta function. On the other hand by CFT and Rubin’s refinement of the ideas of Kolyvagin (and the analytic class number formula) one ob...

متن کامل

Class invariants and cyclotomic unit groups from special values of modular units

In this article we obtain class invariants and cyclotomic unit groups by considering specializations of modular units. We construct these modular units from functional solutions to higher order q-recurrence equations given by Selberg in his work generalizing the Rogers-Ramanujan identities. As a corollary, we provide a new proof of a result of Zagier and Gupta, originally considered by Gauss, r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Société mathématique de France

سال: 1979

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.1890